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Phase transition of two-dimensional Ising model on random point patterns
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The phase transition of two-dimensional Ising model on random point patterns is investigated using Monte
Carlo simulation and the critical temperature is calculated using the Bethe approximation. We find a linear
relation between the critical temperature and the structural characteristics of the random point pattern, as
described by Aboav’s parameter. Numerical results and analytical calculation both yield this linear relation with
a similar slope, though the intercept is different due to the Bethe approximation.
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[. INTRODUCTION experimentsto understand the topological characteristics of
. . _ point patterng13-17. Here, we focus on point patterns gen-
~ A common concern running through a wide range of dis-erated with a given dynamics, which reflect the competition
ciplines is the examination of the spatial occurrence of aand cooperation of interacting agents in a two-dimensional
particular phenomenon. lllustrative examples that reflect theellular network, with each point being an individual agent.
extensive range of scales covered by such phenomena in- Traditional studies of phase transition and critical phe-
clude the location of sulfide inclusions in stéaietallurgy nomena for regular lattices and cellular automata for pattern
[1], artifacts over a sitéarchaeology[2], intensity of trees evolution have provided us with many tools and insights in
in a forest(ecology [3], administrative systems in a prov- the analysis of the Voronoi network of a given point pattern.
ince (geography [4], and the distribution of galaxies in our From the perspective of stochastic dynamical systems, the
universe(astronomy [5]. In each of these instances, it is evolution of a point pattern with a well-defined equation of
possible to represent individual incidences of the phenommotion is an interesting subject of investigation in its own
enon as a set af points in space, defining what we called right. If there exists a stationary state emerging from the
empirical point patterng6]. These patterns represent one €volution, it will be more interesting as equilibrium statisti-
source of evidence that may be useful in learning more aboi#@! mechanics can be used for the analysis of the associated
the phenomenon and the processes responsible for creatiRfaSe diagrams. .
them. In many different fields of science and engineering, , aving made these general remarks, we introduce two
many models have been constructed to derive hypothes%geas for the studies of point patterns in two dimensions. The

. - . . irst one concerns the techniques of topological analysis. To-
concerning the origin of the pattems. The pioneering work 0pological analysis is a powerful tool in the understanding of

D|ggtle [?2 prowdesbthe (r:]ompll(etefspatlal :candomnestsg)_ two-dimensional cellular patterns. A common method of
phom pa leff‘ as a benc (rjnetl)r (;gﬁerence hor _malny stu .;?S. ?@enerating a two-dimensional cellular network for topologi-
the correlation generated by different physical or artificial .| 4na)ysis from an empirical point pattern is to use the
processes. For example, the introduction of repulsion b

fween points produces non-CSR patterns found in the Worst\é/oronoi construction, which dates back to Descartes’ Prin-
) ipia Philosophiae in 1644. There are many applications of
of Haggertet al. [7], Getis and Boot$8], Cliff and Ord[9], b P y app

Ripl 10 4 U d Final 1. Tvoicall Voronoi diagrams. Besides the obvious use in the spatial
Ipley [10], and Upton an Ing etopL1]. Typically two analysis of two-dimensional patterns, there are many famous
measures are used for comparing the empirical point patter

: ; oblems in spatial optimization that employ Voronoi con-
with a given reference, namely the arrangement measure a (tiruction. For example, the public mail boxes problem,

the dispersion measure. The arrangement measure empf\ygﬁich concerns the location of points so that the average

sizes characteristics that are invariant under translation, rOt%‘lstance to the nearest points is minimized; the minimization

tion, reflection, and changes of scale. The dispersion megs o erage distano@r cos) to the nearest point on a service
sures take into account the characteristic of the pattern thg

h der th ) hods of vsis of bute provided that the total length of the route is given; the
changes under these operations. Methods of analysis of thg. 4o of nodegstations and links(railways to minimize
point patterns that have been widely used include the qua

. ) . he total flow cost(transportation coytbetween any two
rate analysis, nearest-neighbor analysis, and second-ord

. Ggiven points on the plane; and the Steiner tree prokjth
analysis[12]. However, very few work$13-2Q address the  rpoq0 proplems in spatial optimization illustrate well the im-
topological characteristic of the point patterns. In this paper, 0o of topological characteristics of cellular patterns.

we will employ some of the Fechniques Qeveloped in the\Ne will use the shell modgl13-16,2Q and the concept of
s;udy .Of soap froth evolution(a parad|gm of  two- T1 neighborq17] for a trivalent cellular network in the char-
dimensional cellular patterns accessible to WelI'Contm”edacterization of the structure. As these techniques are rather
new, their application to the analysis of the point pattern
coupled to a specific dynamics will be quite interesting. In

*Corresponding author. Email address: phszeto@ust.hk this paper, we will only use the Aboav paramef2g] as a
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characterization tool of the random point patterns. In this paper, we will first present the Monte Carlo simu-
The second idea concerns the generalization of a tradiation results of this Ising model in Sec. Il. We then introduce
tional Hamiltonian of magnetism in the modeling of the dy-the Bethe ansatz in solving the Ising model on two-
namics to the point pattern, considered as a group of intedimensional random point patterns in Sec. lll. Finally, we
acting agents constrained in a two-dimensional world. It iswill discuss the relation of the analytical work with the nu-
quite common in the studies of magnetism for a localizedmerical simulation, with possible application to other fields.
moment to be used for the quantum spin defined on a lattice,
and for thesg local moments to interact with their neighbors Il. MONTE CARLO SIMULATION
with the Heisenberg moddR3]. Here we do not have a
lattice, but we have a network that provides us with a shell In a recent paper, we have generalized the Aboav-Weaire
model with a clear meaning of its neighbors. Therefore, wdaw to a cluster of cells in the shell modgl4] for both
can extend the idea of Heisenberg magnetism to point pagxperimental soap froth data and theoretical samples. Here
terns. The formulation up to this point is a simple generali-we concentrate on the theoretical samples as they are much
zation of magnetism on a regular lattice to a network, noteasier to control and generate. They are Voronoi patterns
new in physics, though rather new to computer scienceonstructed from sets df points distributed randomly on a
[24—26. However, the next step in the formulation is new to unit square. Different control levels on the minimal distance
physics, but not to agent dynamics. We will assign a “quanbetween any two points are used to generate different
tum number” called color to each point and define a certairMoronoi patterns. We first define a cutoff distard;g,, with
association of the point to the color. For example, color her@<d,,,<1, in the unit ofdy,, Where d,= 1/\N is the

can be interpreted as an indication of membership to a staverage distance between two points. Then, we sequentially
permarket chain, though the individual member of the assoplace a point randomly on the unit square and calculate the
ciation is located in a different place on the plane, with theirminimum distancel, between this poinitand all other points
own states which carry other propertigsther “quantum  on the square. I8;/d,e > dmin, We accept this point; other-
number’) such as spin states. We see that in this formulationywise we do not. This process continues until we Ngtoints
the terms agent and point can be used interchangeably. Agh the square. We have generated 17 random point sets with
economic interpretation of this model is given by Szeto andy,,,, from 0 to 0.8 in step of 0.05. The Voronoi diagrams are
Kong [27]. then constructed based on these 17-point sets. The number of
The dynamics governing the interaction of agents can beandom points takes two valueld=10 000 andN=30 000,
quite esoteric in real engineering applications and usuallyor all the 17-point sets. Except for the boundary ones, each
can be long range in space as well as in t{28-30. Nev-  point corresponds to a Voronoi cell and the number of
ertheless, for the sake of simplicity, which is essential fornvoronoi cells is about 96% of the original points. These large
physicists to achieve a deeper understanding of the poirdamples withN=30 000 are used to get the Aboav param-
patterns, we limit this research to those interactions that argtersa, b, and self-consistent parametefsee Eqs(4) and
time-independent, and local in the sense that one can write @) below as well as Table].l
simple Hamiltonian to describe the dynamical system. This The Monte Carlo simulation is performed on Voronoi pat-
methodology of analysis couples the mathematics of theerns with differentd,,, and free boundary conditions are
structure of a cellular network to traditional concepts inemp|oyed_ In order to reduce the boundary effect, we only
physics, with interaction taken out from computer scienceanalyze the central pieces of the large systéNrs10 000Q.
which has more relevance to engineering and business applthe sizes of the cut pieces aN=900, 1600, and 2500,
cation. This multidisciplinary approach therefore will carry respectively. The critical temperature in an infinite system is

with it important applications to other fields and the follow- calculated by considering the fourth-order magnetization
ing discussion will outline the steps for the process of modetymulantU defined by[31]

building. ,
The simplest model makes use of only one “quantum UL =1- (m*)
number”: the color of the agent. Supposing that we have T 3(mA?

only two colors, red and blue, then one of the simple — . ) ) )
Hamiltonians is whereL=+vN is the linear size of the system amdis the

magnetization per spin. At critical temperatw¢T,L) =U*,
H=S 3, which is independent of the system sizeThen the unique
- o 195 intersection point otJ for differentL provides an estimate of
’ T.. For eachL, we do a simulation at the fixed temperature
T, and make a measurement on a quar@tym? or m?). By
extrapolating to nearby temperaturgsthe value ofQ(T) is
69btained from the following expressid2,33:

Here the interaction energly is between the agent located at
sitei with color § and the agent located at sitevith color
S. The summation is over all nearest neighbors. This is

generalized two-dimensional Ising model defined on a given 1 1
nonregular lattice. One can introduce a Boltzmann factor EiQi 9XP<T_‘$)Ei
based on this Hamiltonian to model the probability of the QM) = 0 ,
switching of color and perform Monte Carlo simulation to S ex 1 l)E-
follow the evolution of the color pattern. ! To !
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TABLE I. Critical temperature and parameters of five Voronoi patteandenotes the Aboav parameter
andb the intercep{see Eq(4) below]. The self-consistent parameteused in the analytical calculation in
Sec. lll is also recordefsee Eq(5)].

T T

C
dimin a b X (Monte Carlg (Bethe ansaiz
0.0 0.6236 5.5979 6.2693 3.78+0.01 5.205
0.2 0.6953 5.8391 6.2404 3.75+0.01 5.176
0.4 0.8527 6.5199 6.1991 3.72+0.01 5.134
0.6 1.0592 7.3430 6.1373 3.68+0.01 5.072
0.8 1.2754 8.3078 6.0890 3.63+£0.01 5.023
whereQ; is theith measurement of the quanti®y; andE; the f(m) =g(n), (3)

corresponding energy. The simulation temperatures for the
Voronoi patterns withd,,;,=0.0, 0.2, 0.4, 0.6, and 0.8 are
respectively,T;=3.80, 3.75, 3.70, 3.65, and 3.60.

We use the Wolff algorithni34] to perform Monte Carlo
simulation. The flip times of all spins are accumulated an
then divided by the total spin number, thus the Monte Carlo
steps(MCS) per spin are calculated. At each temperature, the m=6-a+ 9 (4)
first 1 000 000 MCS per spin are discarded for equilibration.

Then further 75000 000 MCS per spin are performed for

statistics. To determine the error bars, we split the configunote thatm=m(n) depends on the number of edgesef the
rations into 75 sets, each containing 1 000 000 configurationsentra cell. According to the definitions of Eq4) and(2),

per spin. The critical temperature is calculated for each s&topapility distribution of cells with different sides in the
and the errors are obtained by the standard method. In Tabig,ronoj pattern, the physical quantities obtained will all de-
I, we show the geometric parameters for five Voronoi pat'pend onn. Therefore, it is reasonable to talé(n) as a
terns and their corresponding critical temperatures obtainegd;nsiant and lem=n=x to study the Ising model in a

from the above Monte Carlo simulation. It can be seen tha’i/oronoi structure. The value ofis determined from Eq4)
T, varies linearly with the Aboav parametar Also the re- '

sults of T, deduced by the Bethe ansatz are listed, which will R
be discussed in the next section. x=5[(6-a) + (6 —a)>+ 4b]. )

' wherem is the average number of sides of the neighboring
cells which is related to the central cell withsides, by the
cf\boav—Weaire law

Ill. BETHE’'s APPROXIMATION IN VORONOI

We see from this equation, which is a kind of “mean-field”
CELLULAR STRUCTURES

approximation for the typical cell in the Voronoi pattern, that
We study the Ising model in Voronoi patterns by Bethe'sthe number of edges of the typical celbisand is determined

approximation. Associated with each Voronoi cell is a spinPy the Aboav parametex andb. The partition function for

variable S. There exist interactions between nearest neighthe cluster is

bors only. In the absence of an external field, we introduce a

cluster Hamiltonian of the form QXB' . T)= > exg-HX/ksT]. 6)
n n S=tl
H=-JX $§-B'(NXS. (1) 5721
=1 j=1
Denoting

This cluster consists of a central cell with s@gand itsn
nearest neighbors with spir®, j=1,... n. The mean field

B’(n) describes the average field acting on the cluster by its a=JksT, a =B'/KkgT, (7)
environment. The expectation values of the magnetization
for the central spin and its neighbors are we can get the average value of magnetization for the central
spin,
() = (Sy), P
n @ [2 cosla+ a')[*—[2 cosli— a+ a') ¢
1 fX,a,a') = X o (8)
g(n) = EE S [2 coslia + a')[*+[2 cosli— a + a')]
=1
To be self-consistent, it is required that and the average magnetization for the neighboring spins,
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_[2costia+a')]*tanHa + a') +[2 cosli—- a+ o) [ tanh(—- a + a')
- [2 costia + ') +[2 costi— a + o) ¥

9(x,a,a’) (9)

These are nonlinear equations @fand o', and we need to Aboav parametern shows a linear relation. In the Bethe

see if there is a nonzero root far’ so that the self- ansatz, the slope and intercept of the fitted straight line are

consistency condition is satisfied, i.e., —-0.280 and5.376 with error bars 0.0113 and 0.0105, re-
fx,aa') = g a,a) (10) _spectively. In the_ Monte C_:arlo _simulation, the slope and

Y B intercept of the fitted straight line are0-265 and4.017

We consider five different Voronoi patterns generated fiém with error bars 0.0036 and 0.0034, respectively.

random dots distributed in a unit square with a pair spacing Compared to Monte Carlo simulation results, we observed

constraintd>d,,,. The geometric parameters of the five that although the values @i, have large difference because

Voronoi networks are listed in Table I. To study the critical of the limitation of Bethe’s approximation, the trend for dif-

behavior of the Ising spins, we solve E4q.0) numerically  ferent Aboav parameters is the same. The relative difference

for each Voronoi system by settintc1 andkz=1. At the  betweenT, for the Aboav parametedt,;,=0.0 andd,;;=0.8

critical point, @' has a nonzero solution and the averagefrom the Monte Carlo simulation is

magnetizatioS) tends to zero. The critical temperature ver Tu(Omn=0.8 _3.63

sus the Voronoi parametdr,;, and versus the Aboav param- =——=0.960.
etera is plotted in Fig. 1. These calculations follow Huang Te(Amin=0.0 3.78

[35] and agree with the simple relatiomc=2J/k In[x/ Bethe’s method gives

(x=2)] for a regular lattice of coordinatior. It can be

seen from Fig. 1 that the critical temperatdreversus the T(dynin=0.8) 5.023 0.965

Te(dyin=0.0  5.205

o Based on this comparison, we can use the Bethe ansatz to
" g - predict theT, for a given Voronoi pattern, with appropriate
» 50l . . adjustment for one of the two end points of this line.
g
g asl IV. DISCUSSION
.§ We have computed the critical temperatures of the Ising
8 ol model defined on various random point patterns using the
'5 ) Bethe ansatz. The analytical results exhibit a linear depen-
® o ° dence of the critical temperature on the Aboav parameter,
[ ] ° . . .
350 , , . . ) . . which can be used to predict the corresponding values from
06 07 08 08 10 11 12 13 numerical simulation. The intercept of the linear relation is in
Aboav parameter a error since the Bethe ansatz generally overestimates the mag-
55 nitude of the critical temperature. Within the confine of the
) known limitation of the mean-field calculation of critical
- - temperature, our analysis provides a simple and general

sol = - method for estimating the critical temperature of all kinds of
random point patterns. This is verified by Monte Carlo simu-
lation here, but in general we expect that the linear relation
betweenT. and the Aboav parameter holds, sintgis in
general dependent on the effective coordination number,
which isx in our Bethe ansatz calculation. We see from Eq.

Critical temperature
-
o

a0l (5) that the Aboav parameter enters into the calculatior of
quite naturally, since we expect a self-consistency in the ac-
s ° ° ° o count of the structure. Indeed, the application of the Aboav
35 ; : . . . parameter allows us to couple the topological characteristics
0.0 0.2 04 06 0.8 of the cellular pattern with the single cell approximation used
Voronoi parameterd . in the mean-field calculation of the magnetization. We see

that the trend shown in the Bethe ansatz Tgris a good
FIG. 1. The critical temperature vs Aboav parametéuppe)  approximation for the real,, as determined by numerical
and vs Voronoi parametet.,;, (lower) obtained from Monte Carlo  Simulation. Thus, for a given random point pattern, we can
simulation and from the Bethe ansatz. compute first the Voronoi cellular structure based on this
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point pattern. Then by computing the Aboav parameter, wéias application in econophysics as discussed in the paper by
can read off theT; based on the theoretical calculation. Fi- Szeto and Kong27].

nally, the normalization ofi, can be made using the offset of

the Bethe ansatz for the hexagonal cellular structure, which

corresponds tad,,=1, as it is theT, for Ising spin defined ACKNOWLEDGMENT
on the lattice sites of a triangular lattice. In conclusion, our
work shows that thd for the Ising model defined on two- K.Y.S. acknowledges the support of RGC Grant No.

dimensional random point patterns can be computed. ThislKUST 6157/01P and No. 6144/00P.
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