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The phase transition of two-dimensional Ising model on random point patterns is investigated using Monte
Carlo simulation and the critical temperature is calculated using the Bethe approximation. We find a linear
relation between the critical temperature and the structural characteristics of the random point pattern, as
described by Aboav’s parameter. Numerical results and analytical calculation both yield this linear relation with
a similar slope, though the intercept is different due to the Bethe approximation.
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I. INTRODUCTION

A common concern running through a wide range of dis-
ciplines is the examination of the spatial occurrence of a
particular phenomenon. Illustrative examples that reflect the
extensive range of scales covered by such phenomena in-
clude the location of sulfide inclusions in steel(metallurgy)
[1], artifacts over a site(archaeology) [2], intensity of trees
in a forest(ecology) [3], administrative systems in a prov-
ince (geography) [4], and the distribution of galaxies in our
universe(astronomy) [5]. In each of these instances, it is
possible to represent individual incidences of the phenom-
enon as a set ofn points in space, defining what we called
empirical point patterns[6]. These patterns represent one
source of evidence that may be useful in learning more about
the phenomenon and the processes responsible for creating
them. In many different fields of science and engineering,
many models have been constructed to derive hypotheses
concerning the origin of the patterns. The pioneering work of
Diggle [6] provides the complete spatial randomness(CSR)
point pattern as a benchmark reference for many studies on
the correlation generated by different physical or artificial
processes. For example, the introduction of repulsion be-
tween points produces non-CSR patterns found in the works
of Haggertet al. [7], Getis and Boots[8], Cliff and Ord [9],
Ripley [10], and Upton and Fingleton[11]. Typically two
measures are used for comparing the empirical point patterns
with a given reference, namely the arrangement measure and
the dispersion measure. The arrangement measure empha-
sizes characteristics that are invariant under translation, rota-
tion, reflection, and changes of scale. The dispersion mea-
sures take into account the characteristic of the pattern that
changes under these operations. Methods of analysis of the
point patterns that have been widely used include the quad-
rate analysis, nearest-neighbor analysis, and second-order
analysis[12]. However, very few works[13–20] address the
topological characteristic of the point patterns. In this paper,
we will employ some of the techniques developed in the
study of soap froth evolution(a paradigm of two-
dimensional cellular patterns accessible to well-controlled

experiments) to understand the topological characteristics of
point patterns[13–17]. Here, we focus on point patterns gen-
erated with a given dynamics, which reflect the competition
and cooperation of interacting agents in a two-dimensional
cellular network, with each point being an individual agent.

Traditional studies of phase transition and critical phe-
nomena for regular lattices and cellular automata for pattern
evolution have provided us with many tools and insights in
the analysis of the Voronoi network of a given point pattern.
From the perspective of stochastic dynamical systems, the
evolution of a point pattern with a well-defined equation of
motion is an interesting subject of investigation in its own
right. If there exists a stationary state emerging from the
evolution, it will be more interesting as equilibrium statisti-
cal mechanics can be used for the analysis of the associated
phase diagrams.

Having made these general remarks, we introduce two
ideas for the studies of point patterns in two dimensions. The
first one concerns the techniques of topological analysis. To-
pological analysis is a powerful tool in the understanding of
two-dimensional cellular patterns. A common method of
generating a two-dimensional cellular network for topologi-
cal analysis from an empirical point pattern is to use the
Voronoi construction, which dates back to Descartes’ Prin-
cipia Philosophiae in 1644. There are many applications of
Voronoi diagrams. Besides the obvious use in the spatial
analysis of two-dimensional patterns, there are many famous
problems in spatial optimization that employ Voronoi con-
struction. For example, the public mail boxes problem,
which concerns the location of points so that the average
distance to the nearest points is minimized; the minimization
of average distance(or cost) to the nearest point on a service
route provided that the total length of the route is given; the
location of nodes(stations) and links(railways) to minimize
the total flow cost(transportation cost) between any two
given points on the plane; and the Steiner tree problem[21].
These problems in spatial optimization illustrate well the im-
portance of topological characteristics of cellular patterns.
We will use the shell model[13–16,20] and the concept of
T1 neighbors[17] for a trivalent cellular network in the char-
acterization of the structure. As these techniques are rather
new, their application to the analysis of the point pattern
coupled to a specific dynamics will be quite interesting. In
this paper, we will only use the Aboav parameter[22] as a*Corresponding author. Email address: phszeto@ust.hk
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characterization tool of the random point patterns.
The second idea concerns the generalization of a tradi-

tional Hamiltonian of magnetism in the modeling of the dy-
namics to the point pattern, considered as a group of inter-
acting agents constrained in a two-dimensional world. It is
quite common in the studies of magnetism for a localized
moment to be used for the quantum spin defined on a lattice,
and for these local moments to interact with their neighbors
with the Heisenberg model[23]. Here we do not have a
lattice, but we have a network that provides us with a shell
model with a clear meaning of its neighbors. Therefore, we
can extend the idea of Heisenberg magnetism to point pat-
terns. The formulation up to this point is a simple generali-
zation of magnetism on a regular lattice to a network, not
new in physics, though rather new to computer science
[24–26]. However, the next step in the formulation is new to
physics, but not to agent dynamics. We will assign a “quan-
tum number” called color to each point and define a certain
association of the point to the color. For example, color here
can be interpreted as an indication of membership to a su-
permarket chain, though the individual member of the asso-
ciation is located in a different place on the plane, with their
own states which carry other properties(other “quantum
number”) such as spin states. We see that in this formulation,
the terms agent and point can be used interchangeably. An
economic interpretation of this model is given by Szeto and
Kong [27].

The dynamics governing the interaction of agents can be
quite esoteric in real engineering applications and usually
can be long range in space as well as in time[28–30]. Nev-
ertheless, for the sake of simplicity, which is essential for
physicists to achieve a deeper understanding of the point
patterns, we limit this research to those interactions that are
time-independent, and local in the sense that one can write a
simple Hamiltonian to describe the dynamical system. This
methodology of analysis couples the mathematics of the
structure of a cellular network to traditional concepts in
physics, with interaction taken out from computer science,
which has more relevance to engineering and business appli-
cation. This multidisciplinary approach therefore will carry
with it important applications to other fields and the follow-
ing discussion will outline the steps for the process of model
building.

The simplest model makes use of only one “quantum
number”: the color of the agent. Supposing that we have
only two colors, red and blue, then one of the simple
Hamiltonians is

H = o
ki,jl

JijSiSj .

Here the interaction energyJij is between the agent located at
site i with color Si and the agent located at sitej with color
Sj. The summation is over all nearest neighbors. This is a
generalized two-dimensional Ising model defined on a given
nonregular lattice. One can introduce a Boltzmann factor
based on this Hamiltonian to model the probability of the
switching of color and perform Monte Carlo simulation to
follow the evolution of the color pattern.

In this paper, we will first present the Monte Carlo simu-
lation results of this Ising model in Sec. II. We then introduce
the Bethe ansatz in solving the Ising model on two-
dimensional random point patterns in Sec. III. Finally, we
will discuss the relation of the analytical work with the nu-
merical simulation, with possible application to other fields.

II. MONTE CARLO SIMULATION

In a recent paper, we have generalized the Aboav-Weaire
law to a cluster of cells in the shell model[14] for both
experimental soap froth data and theoretical samples. Here
we concentrate on the theoretical samples as they are much
easier to control and generate. They are Voronoi patterns
constructed from sets ofN points distributed randomly on a
unit square. Different control levels on the minimal distance
between any two points are used to generate different
Voronoi patterns. We first define a cutoff distancedmin with
0ødmin,1, in the unit of daver, where daver=1/ÎN is the
average distance between two points. Then, we sequentially
place a point randomly on the unit square and calculate the
minimum distancedi between this pointi and all other points
on the square. Ifdi /daver.dmin, we accept this point; other-
wise we do not. This process continues until we getN points
on the square. We have generated 17 random point sets with
dmin from 0 to 0.8 in step of 0.05. The Voronoi diagrams are
then constructed based on these 17-point sets. The number of
random points takes two values,N=10 000 andN=30 000,
for all the 17-point sets. Except for the boundary ones, each
point corresponds to a Voronoi cell and the number of
Voronoi cells is about 96% of the original points. These large
samples withN=30 000 are used to get the Aboav param-
etersa, b, and self-consistent parameterx [see Eqs.(4) and
(5) below as well as Table I].

The Monte Carlo simulation is performed on Voronoi pat-
terns with differentdmin and free boundary conditions are
employed. In order to reduce the boundary effect, we only
analyze the central pieces of the large systemssN=10 000d.
The sizes of the cut pieces areN=900, 1600, and 2500,
respectively. The critical temperature in an infinite system is
calculated by considering the fourth-order magnetization
cumulantU defined by[31]

UsT,Ld = 1 −
km4l

3km2l2 ,

whereL=ÎN is the linear size of the system andm is the
magnetization per spin. At critical temperatureUsT,Ld=U*,
which is independent of the system sizeL. Then the unique
intersection point ofU for differentL provides an estimate of
Tc. For eachL, we do a simulation at the fixed temperature
T0 and make a measurement on a quantityQ (m2 or m4). By
extrapolating to nearby temperaturesT, the value ofQsTd is
obtained from the following expression[32,33]:

QsTd =
oi

Qi expS 1

T0
−

1

T
DEi

oi
expS 1

T0
−

1

T
DEi

,
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whereQi is theith measurement of the quantityQ, andEi the
corresponding energy. The simulation temperatures for the
Voronoi patterns withdmin=0.0, 0.2, 0.4, 0.6, and 0.8 are,
respectively,T0=3.80, 3.75, 3.70, 3.65, and 3.60.

We use the Wolff algorithm[34] to perform Monte Carlo
simulation. The flip times of all spins are accumulated and
then divided by the total spin number, thus the Monte Carlo
steps(MCS) per spin are calculated. At each temperature, the
first 1 000 000 MCS per spin are discarded for equilibration.
Then further 75 000 000 MCS per spin are performed for
statistics. To determine the error bars, we split the configu-
rations into 75 sets, each containing 1 000 000 configurations
which are chosen from the simulation every 1 000 000 MCS
per spin. The critical temperature is calculated for each set
and the errors are obtained by the standard method. In Table
I, we show the geometric parameters for five Voronoi pat-
terns and their corresponding critical temperatures obtained
from the above Monte Carlo simulation. It can be seen that
Tc varies linearly with the Aboav parametera. Also the re-
sults ofTc deduced by the Bethe ansatz are listed, which will
be discussed in the next section.

III. BETHE’s APPROXIMATION IN VORONOI
CELLULAR STRUCTURES

We study the Ising model in Voronoi patterns by Bethe’s
approximation. Associated with each Voronoi cell is a spin
variableSi. There exist interactions between nearest neigh-
bors only. In the absence of an external field, we introduce a
cluster Hamiltonian of the form

Hsnd = − Jo
j=1

n

S0Sj − B8sndo
j=1

n

Sj . s1d

This cluster consists of a central cell with spinS0 and itsn
nearest neighbors with spinsSj, j =1, . . . ,n. The mean field
B8snd describes the average field acting on the cluster by its
environment. The expectation values of the magnetization
for the central spin and its neighbors are

fsnd ; kS0l,
s2d

gsnd ; K1

n
o
j=1

n

SjL .

To be self-consistent, it is required that

fsmd = gsnd, s3d

wherem is the average number of sides of the neighboring
cells which is related to the central cell withn sides, by the
Aboav-Weaire law

m= 6 −a +
b

n
. s4d

Note thatm=msnd depends on the number of edges,n, of the
central cell. According to the definitions of Eqs.(1) and(2),
B8snd, fsnd, and gsnd are also functions ofn. As there is a
probability distribution of cells with different sides in the
Voronoi pattern, the physical quantities obtained will all de-
pend onn. Therefore, it is reasonable to takeB8snd as a
constant and letm=n;x to study the Ising model in a
Voronoi structure. The value ofx is determined from Eq.(4),

x = 1
2fs6 − ad + Îs6 − ad2 + 4bg. s5d

We see from this equation, which is a kind of “mean-field”
approximation for the typical cell in the Voronoi pattern, that
the number of edges of the typical cell isx, and is determined
by the Aboav parametera andb. The partition function for
the cluster is

Qsx,B8,Td = o
S0=±1

hSj=±1j

expf− Hsxd/kBTg. s6d

Denoting

a ; J/kBT, a8 ; B8/kBT, s7d

we can get the average value of magnetization for the central
spin,

fsx,a,a8d =
f2 coshsa + a8dgx − f2 coshs− a + a8dgx

f2 coshsa + a8dgx + f2 coshs− a + a8dgx , s8d

and the average magnetization for the neighboring spins,

TABLE I. Critical temperature and parameters of five Voronoi patterns.a denotes the Aboav parameter
andb the intercept[see Eq.(4) below]. The self-consistent parameterx used in the analytical calculation in
Sec. III is also recorded[see Eq.(5)].

dmin a b x
Tc

(Monte Carlo)
Tc

(Bethe ansatz)

0.0 0.6236 5.5979 6.2693 3.78±0.01 5.205

0.2 0.6953 5.8391 6.2404 3.75±0.01 5.176

0.4 0.8527 6.5199 6.1991 3.72±0.01 5.134

0.6 1.0592 7.3430 6.1373 3.68±0.01 5.072

0.8 1.2754 8.3078 6.0890 3.63±0.01 5.023
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gsx,a,a8d =
f2 coshsa + a8dgx tanhsa + a8d + f2 coshs− a + a8dgx tanhs− a + a8d

f2 coshsa + a8dgx + f2 coshs− a + a8dgx . s9d

These are nonlinear equations ofa and a8, and we need to
see if there is a nonzero root fora8 so that the self-
consistency condition is satisfied, i.e.,

fsx,a,a8d = gsx,a,a8d. s10d

We consider five different Voronoi patterns generated fromN
random dots distributed in a unit square with a pair spacing
constraint d.dmin. The geometric parameters of the five
Voronoi networks are listed in Table I. To study the critical
behavior of the Ising spins, we solve Eq.(10) numerically
for each Voronoi system by settingJ=1 andkB=1. At the
critical point, a8 has a nonzero solution and the average
magnetizationkSl tends to zero. The critical temperature ver-
sus the Voronoi parameterdmin and versus the Aboav param-
etera is plotted in Fig. 1. These calculations follow Huang
[35] and agree with the simple relationTc=2J/k lnfx/
sx−2dg for a regular lattice of coordinationx. It can be
seen from Fig. 1 that the critical temperatureTc versus the

Aboav parametera shows a linear relation. In the Bethe
ansatz, the slope and intercept of the fitted straight line are
−0.280 and5.376 with error bars 0.0113 and 0.0105, re-
spectively. In the Monte Carlo simulation, the slope and
intercept of the fitted straight line are −0.265 and4.017
with error bars 0.0036 and 0.0034, respectively.

Compared to Monte Carlo simulation results, we observed
that although the values ofTc have large difference because
of the limitation of Bethe’s approximation, the trend for dif-
ferent Aboav parameters is the same. The relative difference
betweenTc for the Aboav parameterdmin=0.0 anddmin=0.8
from the Monte Carlo simulation is

Tcsdmin = 0.8d
Tcsdmin = 0.0d

=
3.63

3.78
= 0.960.

Bethe’s method gives

Tcsdmin = 0.8d
Tcsdmin = 0.0d

=
5.023

5.205
= 0.965.

Based on this comparison, we can use the Bethe ansatz to
predict theTc for a given Voronoi pattern, with appropriate
adjustment for one of the two end points of this line.

IV. DISCUSSION

We have computed the critical temperatures of the Ising
model defined on various random point patterns using the
Bethe ansatz. The analytical results exhibit a linear depen-
dence of the critical temperature on the Aboav parameter,
which can be used to predict the corresponding values from
numerical simulation. The intercept of the linear relation is in
error since the Bethe ansatz generally overestimates the mag-
nitude of the critical temperature. Within the confine of the
known limitation of the mean-field calculation of critical
temperature, our analysis provides a simple and general
method for estimating the critical temperature of all kinds of
random point patterns. This is verified by Monte Carlo simu-
lation here, but in general we expect that the linear relation
betweenTc and the Aboav parameter holds, sinceTc is in
general dependent on the effective coordination number,
which is x in our Bethe ansatz calculation. We see from Eq.
(5) that the Aboav parameter enters into the calculation ofx
quite naturally, since we expect a self-consistency in the ac-
count of the structure. Indeed, the application of the Aboav
parameter allows us to couple the topological characteristics
of the cellular pattern with the single cell approximation used
in the mean-field calculation of the magnetization. We see
that the trend shown in the Bethe ansatz forTc is a good
approximation for the realTc, as determined by numerical
simulation. Thus, for a given random point pattern, we can
compute first the Voronoi cellular structure based on this

FIG. 1. The critical temperature vs Aboav parametera (upper)
and vs Voronoi parameterdmin (lower) obtained from Monte Carlo
simulation and from the Bethe ansatz.
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point pattern. Then by computing the Aboav parameter, we
can read off theTc based on the theoretical calculation. Fi-
nally, the normalization onTc can be made using the offset of
the Bethe ansatz for the hexagonal cellular structure, which
corresponds todmin=1, as it is theTc for Ising spin defined
on the lattice sites of a triangular lattice. In conclusion, our
work shows that theTc for the Ising model defined on two-
dimensional random point patterns can be computed. This

has application in econophysics as discussed in the paper by
Szeto and Kong[27].
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